

Abstract—Many real world problems can be defined as

optimisation problems in which the aim is to maximise an

objective function. The quality of obtained solution is

directly linked to the pertinence of the used objective

function. However, designing such function, which has to

translate the user needs, is usually fastidious. In this paper,

a method to help user objective functions designing is

proposed. Our approach, which is highly interactive, is

based on man-machine dialogue and more particularly on

the comparison of problem instance solutions by the user.

We propose an experiment in the domain of cartographic

generalisation that shows promising results.

Index Terms—user needs definition, objective function

designing, man-machine dialogue, cartographic

generalisation.

I. INTRODUCTION

Artificial systems are more effective than humans to solve

many problems. One of the reasons is their computing capacity

that allows them to tests many possibilities in a short period of

time. However, in order to get good results, an artificial system

has to know what it is searching, i.e. what type of solutions is

expected. Unfortunately, while human experts can easily give a

qualitative evaluation of the quality of a problem solution or

order several solutions in terms of quality, it is often far more

difficult for them to express their expectations in a formal way

that can be used by artificial systems. This problem is

particularly complex when numerous measures are used to

characterise a solution and when no simple links can be found

between these measures values and the solution quality.

This paper deals with the problem of the formalisation of the

user outcome expectation from the system, into a form usable by

artificial systems. In this context, we propose an approach

aiming at translating the user needs into an objective function

thanks to dialogue between the user and the system.

In Section 2, the general context of our work is introduced.

Section 3 is devoted to the presentation of our approach. Section

4 describes an application of our approach to cartographic

generalisation. We present a real case study that we carried out

P. Taillandier is with the UMI UMMISCO of IRD, 209, 32 avenue Henri

Varagnat,93143 Bondy, France and with the UMI 209 of IFI, MSI, ngo 42 Ta

Quang Buu, Ha Noi, Viet Nam (e-mail: patrick.taillandier@gmail.com).

J. Gaffuri is with the COGIT lab of IGN , 73 avenue De Paris, 94165

Saint-Mandé, France (e-mail: julien.gaffuri@ign.fr).

ICITA 2009 ISBN: 978-981-08-3029-8

as well as its results. Section 5 concludes and presents the

perspectives of this work.

II. CONTEXT

A. Optimisation problem and objective function

Many real world problems can be expressed as optimisation

problems. Solving such a problem consists in finding, among all

possible solutions of the problems, the one that maximises an

objective function. This function characterises the quality of a

solution. Its definition is a key point of the resolution of

optimisation problems [19]-[20]. Indeed, the goal of the

resolution of an optimisation problem is to find the solution that

maximises (or minimises) this function. Thus, if the objective

function is not in adequacy with the real quality of a solution, the

solutions that will be found will never be good. Many works

were interested in the definition of such function for specific

problems [14]-[21] but few proposed general approach for

helping the user of an optimisation system to define it.

B. Related Works

The problem of objective function definition and more

generally of user need definition is a complex problem which

was studied in various fields.

A first approach to solve this problem is to use supervised

machine learning techniques. These techniques consist in

inducing a general model from examples labeled by a

user/expert. In this context, it is possible to learn an objective

function from examples evaluated by a user. This approach was

used in several works. For example, [21] used this approach in

the domain of computer vision, [6], in the learning of cognitive

radio.

A second approach consists in establishing a man-machine

dialogue to converge toward a formalisation of the user needs.

Reference [5] proposes to use such approach in order to help

users to create original map legends. This work proposed to use

map samples to establish a dialogue between the user and the

system. This dialogue allows the system to retrieve the user

preferences, and thus to design a suitable legend that respects

the user expectations as well as cartographic constraints (to

ensure the map readability). In the same way, [13] proposes to

use map samples to capture user needs in terms of geographic

information. Our work is taking place in the continuity of these

two works. We propose to use the same approach based on a

dialogue between the user and the system established through

the presentation of samples.

Objective Function Designing Led by User

Preferences Acquisition

Patrick Taillandier and Julien Gaffuri

 124

The 6th International Conference on Information Technology and Applications (ICITA 2009)

III. PROPOSED APPROACH

A. General approach

As stated in the introduction, if experts often have difficulties

to express in a formal way their needs from a system, it is far

easier for them to compare different solutions of a problem and

to point out their preferences. Thus, we propose to base our user

need definition approach on the presentation of comparisons

between solutions to the user. Each comparison is composed of

two solutions for a same problem instance. The user can give his

preferences toward these two solutions to the system, i.e. the

solution that he prefers if there is one. The system then

automatically build the evaluation function from the whole set

of preferences.

Our general approach, presented Figure 1, is composed of 3

steps: the first one consists in generating a set of pairs of

solutions to compare (called “comparisons set”); the second one

consists in capturing the user preferences by asking the user to

select its favourite solution for each comparison; the last step

consists in using these captured preferences to automatically

build the objective function that will represent the user

expectations toward the optimisation system.

Fig. 1. General approach

In the following sections, we described each of these three

steps.

B. Initialisation of the comparison set

The first step of our approach consists in generating a set of

comparisons that will be used to capture the user needs. We

defined a comparison as a set of two solutions for a same

problem instance.

The generation of the comparison set depends on the context

of use of our approach. For example, in the case where a set of

instances of the considered problem is available and where this

set is too big to take into account all available instances, a

sampling method has to be used in order to select a subset of

problem instances. The subset has to be representative of the

whole set in order to capture more pertinently the user

preferences in a generic objective function.

Each selected instance has to be solved in order to obtain at

least two solutions for it. For each couple of solutions, a

comparison is created and is added to the comparison set.

C. Capture of the user preferences

The second step of our approach consists in capturing the

user preferences. Figure 2 presents our approach: at each

iteration, a comparison is selected between all available ones

(the comparison set). Then, the user defines its preferences, i.e.

between the two solutions, the one that he finds better. The user

can also define that the two solutions are as good or as bad. This

sequence is reiterated until an ending criterion is checked. An

example of ending criterion can be to stop the cycle when a

specific number of comparisons have been presented to the user.

Fig. 2. User preference capture approach

The main question of this step concerns the choice of a

comparison to propose to the user at each iteration. How to

choose that comparison? To guide this choice, we propose to

use comparison choice strategies: a comparison choice strategy

allows the choice of the next comparison among a set of

comparisons according to a specific strategy.

In this paper, we propose four different comparison choice

strategies:

• Measure consistency analysis: this strategy consists in

choosing a comparison where the two solutions are

equivalent in terms of measure values. The goal is to

analyse the consistency of the measure set. If the user

prefers one of the two solutions whereas they are

equivalent in terms of measure values, it means that the

measure set is not pertinent and does not allow to

well-characterised the solution quality.

• Measure evolution analysis: this strategy consists in

choosing a comparison where the value of only one

measure changes between the two solutions. The goal is

to analyse how the quality of a solution evolves

according to the evolution of the value of this measure.

• Order of preference between two measures: this strategy

consists in choosing a comparison where the values of

only two measures change between the two solutions.

The goal is to compare the relative importance of each

measure for the computation of the solution quality.

• Random comparison: this strategy consists in choosing

randomly a comparison in the comparison set.

In order to define a global strategy of user preference capture,

 125

we propose to chain different comparison choice strategies.

Indeed, in a first step, we propose to apply the measure

consistency analysis strategy in order to check the pertinence of

the measure set. If this one is not pertinent, the objective

function obtained at the end of the user need definition process

will certainly not be perfect. Then, in a second step, we propose

to apply the measure evolution analysis strategy for each

measure. This step allows a better understanding of the link

existing between the evolution of a measure and the evolution of

the solution quality. The third step consists in applying the order

of preference between two measures strategy to compare by

couple the relative importance of each measure. In the last step,

we propose to apply he random comparison strategy.

D. Definition of the objective function

The last step of our approach consists in designing an

objective function from the user preferences.

We propose to formulate the objective function as a set of

regression rules. Each regression rule is associated to a

weighted means. The interest of such representation is to be

easily interpretable by domain experts and thus to facilitate the

objective function validation.

Let M be the set of measures, wi the weight associated to the

measure i and Vali(sol), the value of the measure i for the

solution sol belonging to the whole possible solution set SOL.

We define the measures of M such as:

MAXVALsolvalMINVALMiSOLsol i _)(_,, ≤≤∈∀∈∀

with VAL_MIN and VAL_MAX real.

Each regression rule is defined as follows:

)(
1

)(then condition if solValw
w

solquality
Mi

ii

Mi

i

∑
∑ ∈

∈

××=

An Example of objective function is presented in Section

IV.E.3.

Building an objective function consists in finding a set of

regression rules (with, for each of them, a condition and the

weight values) from the preferences given by the users on the

samples. As presented Figure 3, to solve this problem, we

propose to use an approach based on the search of the best

weights and eventually on the partitioning of the measures set

(which correspond to the addition of new regression rules).

At the initial stage, the objective function is composed of only

one regression rule, such as the measure space is composed of

only one partition. At the first step, the system searches a weight

assignment that maximises the adequacy between the objective

function and the user preferences. If this weight assignment is in

total adequacy with the user preferences, the process ends; the

objective function is composed of only one regression rule.

Otherwise, new regression rules are introduced: the system

computes partitions of the measure set in order to detect the

parts of the measure set that are not compatible with the others.

Then, a new weight assignment is searched again for all

regression rules, by considering all partitions built at the same

time. If the weight assignment obtained after the partitioning

allows to get a better result than the previous one, it is kept;

otherwise, the system backtracks to the previous objective

function and end the evaluation function building process. This

partitioning procedure is recursively repeated until the learnt

objective function allows to obtain the given user preferences or

until no more improvement of the objective function is

obtained.

Fig. 3. Approach of evaluation function building

1) Search of the best weight assignment

We propose to formulate the problem of best weight

assignment as a minimisation problem. We define a global error

function that represents the inadequacy between the evaluation

function (and thus the weight assignment) and the user

preferences. The goal of the best weight assignment search is to

find the weights that allow to minimise the global error function.

Let fobj(sol) be the current objective function that evaluates

the quality of a solution sol.

Let csol1,sol2 be a comparison between two solutions, sol1 and

sol2.

Let pc be the user preference for the comparison c. pc can be

either {sol1} (the user prefers the solution sol1), {sol2} (the user

prefers the solution sol2) or {sol1, sol2} (the two solutions have

the same quality for the user).

We define the function comp(c, fobj, pc) that determines for a

comparison c if the user preference pc is compatible with the

objective function fobj, i.e. if the preference formulated by the

user is consistent with the quality order obtained by applying the

objective function on the solutions. If the user preference pc is

compatible with the objective function fobj for the comparison c,

comp(c, fobj, pc) is equal to 0; otherwise it is equal to 1.

{ }

{ }

{ }

























>=

>=

==

=

otherwise

solfsolfandsolpor

solfsolfandsolpor

solfsolfandsolsolp

if

pfccomp

objobjc

objobjc

objobjc

cobj

1

)()(

)()(

)()(,

0

),,(

122

211

2121

 126

We define the function error(c, fobj, pc) that returns the error

value for a comparison c. This function is defined as:









=−+

=

=

1),,()()(

0),,(0

),,(

21 cobjobjobjerror

cobj

cobj

pfccompifsolfsolfval

pfccompif

pfcerror

In this function, we integrated a parameter valerror that

represents the minimum importance of an error whatever the

values of the objective function for the two solutions are. The

higher the value of this parameter, the more important it will be

to minimise the number of incompatible comparisons.

Finally, the global error function proposed corresponds to the

mean error obtained with the objective function fobj on the

comparison sample Comp:

∑
∈

×=
Compc

cobjobj pfcerror
Comp

CompfError),,(
1

),(

The aims of the weight assignment step is to find a weight

assignment that minimises Error(fobj, Comp). The size of the

search space will be most of time too high to carry out a

complete search. Thus, it will be necessary to proceed by

incomplete search. In this context, we propose to use a

metaheuristic to find the best weight assignment. In the

literature, numerous metaheuristics were introduced

[8]-[11]-[15]. In this paper, we propose to use genetic

algorithms [12] which are particularly effective when the search

space is well-structured as it is in our search problem.

2) Partitioning of the measure space

For some user need definition problems, it will not be

possible to find a weight assignment compatible with all user

preferences. Thus, we propose to partition the measure set space

and to define for each partition a regression rule with its own

weight assignment.

We propose to base our partitioning method on the utilisation

of supervised learning techniques. The goal is to search the parts

of the measure space that have a different behaviour in terms of

objective function. Thus, we search to detect the parts of the

measure space which contain solutions linked to an

incompatible comparison.

We built an example set composed of solutions described by

its measures values. The conclusion could be either

“compatible” if the comparison which contains the solution is

compatible with the objective function or “incompatible” if it is

not. Then, a supervised learning algorithm is used to partition

the measure space. We remind that we proposed to express the

partition in the form of rules. Thus, it is necessary to use a

supervised learning algorithm that allows to build a predictive

model expressed by rules. Different algorithms could be used

for this partitioning problem such as RIDOR [10] or C4.5

algorithm [16]. In this paper, we propose to use the effective and

well-established RIPPER algorithm [7].

Figure 4 presents an example of partitioning for a measure set

composed of two measures.

Fig. 4. Partitioning method

Once the partitioning is carried out, the user need definition

module performs a new search of the best weights assignment.

All partitions are considered at the same time for this search. If

the weights assignment found is better (in terms of minimisation

of the global error value) than the assignment obtained before

the partitioning, the new objective function is kept. Otherwise,

the module keeps the previously obtained objective function.

IV. APPLICATION TO CARTOGRAPHIC

GENERALISATION

A. Automatic cartographic generalisation

We propose to test our objective function designing approach

in the domain of cartographic generalisation. Cartographic

generalisation is the process that aims at simplifying geographic

data to suit the scale and purpose of a map. The objective of this

process is to ensure the readability of the map while keeping the

essential information of the initial data. Figure 5 gives an

example of cartographic generalisation.

Fig. 5. Cartographic Generalisation

The automation of the generalisation process is an interesting

industrial application context which is far from being solved.

Moreover, it directly interests the mapping agencies that wish to

improve their map production lines. At last, the multiplication

of web sites allowing creating one’s own map increases the

needs of reliable and effective automatic generalisation

processes.

One classical approach to automate the generalisation

process is to use a local, step-by-step and knowledge-based

method [4]: each vector object of the database (representing a

building, a road segment, etc.) is transformed by application of a

sequence of generalisation algorithms realising atomic

transformations. The choice of the applied sequence algorithms

is not predetermined but built on the fly for each object

according to heuristics and to its characteristics.

 127

B. The generalisation system

The generalisation system that we use for our experiment is

based on the AGENT model [3]-[17]. The AGENT model has

been further described in [18].

In this model, geographic objects (roads, buildings, etc) are

modelled as agents. Geographic agents manage their own

generalisation, choosing and applying generalisation operations

to themselves. Each state of the agent represents the geometric

state of the considered geographic objects.

During its generalisation process, each agent is guided by a

set of constraints that represents the specifications of the desired

cartographic product. An example of constraint is, for a building

agent, to be big enough to be readable. Each constraint has a

satisfaction level between 0 (constraint not satisfy at all) and

100 (constraint perfectly satisfy). For each state, the agent

computes its own satisfaction according to the values of its

constraint satisfaction.

To satisfy its constraints as well as possible, a geographical

agent carries out a cycle of actions during which it tests different

actions in order to reach a perfect state (where all of its

constraints are perfectly satisfied) or at least the best possible

state. The action cycle results in an informed exploration of a

state tree. Each state represents the geometric state of the

considered geographic objects. Figure 6 gives an example of a

state tree obtained with the generalisation system.

Fig. 6. Example of a state tree for the generalisation of a

building

C. Difficulties of the agent satisfaction function definition

The AGENT model has been the core of numerous research

works and is used for map production in several mapping

agencies. However, the question of the evaluation of the state of

an agent is still asked. The function usually used is a mean of the

constraint satisfaction weighted by their importance (which is

often an integer ranged between 1 and 10). The problem of this

function is to give satisfaction values too homogenous. More

over, it does not allow to take into account discontinuities in the

satisfaction function. At last, the definition of the importance

values is often complex and fastidious when more than five

constraints are in stake [2]. Thus, having an approach like the

one described in this paper allowing to design the agent

satisfaction function is particularly interesting in the context of

the AGENT model.

D. Implementation of our approach for the AGENT model

We experiment our approach on an implementation of our

user need definition module in Java, using GéOxygene [2] for

geographical data transformation, and WEKA [22] for the

partitioning part using RIPPER algorithm.

Figure 7 presents our implemented interface. On the top

panel, the initial state for a building is presented to the user,

with, under, the two possible solutions. The user gives its

preference for this sample.

Fig. 7. Implemented graphic interface

E. Case study

1) Setting of the case study

We propose to apply our user need definition approach for

the learning of the satisfaction function of the generalisation of

building agents for 1:25000 scaled maps.

We defined six constraints for the building agents:

• Size constraint: the building shape should be big enough.

Let Ssz be the value of this constraint satisfaction.

• Granularity constraint: the building shape should not

contain too small details. Let Sgr be the value of this

constraint satisfaction.

• Squareness constraint: the angles of the building that are

nearly square should be square. Let Ssq be the value of

this constraint satisfaction.

• Convexity constraint: the convexity of the building should

be preserved. Let Scv be the value of this constraint

satisfaction

• Elongation constraint: the elongation of the building

should be preserved. Let Sel be the value of this

constraint satisfaction

• Orientation constraint: the orientation of the building

should be preserved. Let Sor be the value of this

constraint satisfaction

2) Experiment protocol

50 comparisons (the learning set) were presented to a

generalisation expert to learn an objective function. Then, we

tested the learnt objective function on 50 new comparisons (the

test set) which were selected in a new area and for which the

 128

expert expressed its preferences.

The value used for valerror (cf. Section III.D.1) is 40. This

value is high enough to limit the number of incompatible

comparisons and, at the same time, not too high in order to take

into account the difference of values of the objective function

value in case of errors. Thus, in our application context, the

value of the global error is ranged between 0 and 140.

3) Results

The learnt objective function (with S, the satisfaction of the

building agent) is the following:

()

()

()













×+×+×+×+×=⇒>

×+×+×+×+×=⇒<≤

×+×+×+×+×+×=⇒<

szgrsqelcvcv

szgrsqelcvcv

szorgrsqelcvcv

SSSSSSSif

SSSSSSSif

SSSSSSSSif

72399
30

1
)93(

67177
28

1
)9383(

722926
28

1
)83(

Table 1 presents the results obtained on the two comparison

sets. The learnt objective function allowed to get, for both

comparison sets, a global error value lower than 5 and a number

of incompatible comparisons equals to 5.

 Nb of incompatible comparisons Global error

Learning set 5 4.25

Test set 5 4.63

Table 1. Results of the learnt objective function on the learning

set and on the test set.

These results show that our approach allowed to learn a

pertinent objective function. Indeed, the results obtained by the

learnt function are both good on the learning set and on the test

set. For both comparison sets, the global error value is very low

and only 5 of the 50 comparisons are incompatible. Among

these incompatible comparisons, several can be explained by

the lack of pertinent measures used to describe the

generalisation results. Indeed, the Measure consistency analysis

comparison choice strategy allowed us to detect that, for some

comparisons, two states can be identical in terms of constraint

satisfactions but different in terms of generalisation quality.

V. CONCLUSION

In this paper, we presented an approach dedicated to the

definition of user needs. Thus, we proposed an approach based

on a man-machine dialogue aiming at defining an objective

function representing the user expectations toward an

optimisation system. An experiment, carried out in the domain

of cartographic generalisation, showed that our approach can

help users to formalise their needs and can allow to detect lacks

of pertinent measures.

Our approach is based on the utilisation of comparison

choosing strategies. In this paper, we defined four different

strategies. Other strategies, more complex, could be proposed,

such as strategies that take more into account the preferences

initially formalised by the user.

Concerning the exploration part as well as the partitioning

part, we just tested one search algorithm and one supervised

learning algorithm. An interesting study could be to test others

algorithms and to compare the results with the ones obtained.

A last perspective could be to pass from an acquisition

problem to a revision problem. Indeed, it could be interesting to

take into account an initial objective function and to refine it

rather than learning a new one from scratch.

REFERENCES

[1] T. Badard and A. Braun, OXYGENE: An open framework for the
deployment of geographic web services. Im proceedings of the 21st
International Cartographic Conference (ACI/ICA), Durban, South Africa,
August 10-16, 2003, pp 994-1004.

[2] S. Bard, Quality Assessment of Cartographic Generalisation,
Transactions in GIS, 8, 2004, pp. 63-81.

[3] M. Barrault, N. Regnauld, C. Duchêne, K. Haire, C. Baejis, Y.
Demazeau, P. Hardy, W. Mackaness, A. Ruas and R. Weibel, Integrating
multi-agent, object-oriented, and algorithmic techniques for improved
automated map generalization. In ICC, 2001.

[4] K. Brassel and R. Weibel, A review and conceptual framework of
automated map generalization. IJGIS, 1988.

[5] S. Christophe, Creative Cartography based on Dialogue, in 'In
proceedings of AutoCarto', Shepherdstown, West Virginia, 2008.

[6] C. Clancy, J. Hecker, E. Stuntebeck, T. O'Shea, Applications of Machine
Learning to Cognitive Radio Networks, Wireless Communications,
IEEE, vol. 14, no. 4, August 2007, pp. 47-52.

[7] W. Cohen, Fast effective rule induction, in Proc. (ICML-95), 1995, pp.
115—123.

[8] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, 2004.

[9] J. Gaffuri and J. Trévisan, Role of urban patterns for building
generalisation: An application of AGENT, in 'Workshop on
Generalisation and Multiple representation', United Kingdom, 2004.

[10] B.R. Gaines and P. Compton, Induction of Ripple-Down Rules Applied
to Modeling Large Databases. Journal of Intelligent Information Systems
5(3), 1995, pp. 211--228.

[11] F. Glover, Tabu search. Journal on Computing, 1989.

[12] J.H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor:
University of Michigan Press, 1975.

[13] F. Hubert and A. Ruas, A method based on samples to capture user needs
for generalisation, in 'fifth workshop on progress in automated map
generalisation', Paris, 2003.

[14] S. Kakade, Y. W. Teh, and S. Roweis. An alternative objective function
for Markovian fields. In Proc. 19

th
 ICML, 2002.

[15] S. Kirkpatrick, C. Gellatt, and M.P. Vecchi, 'Optimization by Simulated
Annealing', Science 220, 1983, pp.671--680.

[16] J. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann
Publishers Inc, 1993.

[17] A. Ruas, Modèle de généralisation de données géographiques à base de
contraintes et d’autonomie. Thèse de l’UMLV, 1999.

[18] A. Ruas, and C. Duchêne, A Prototype Generalisation System Based on
the Multi-Agent Paradigm. Generalisation of Geographic Information:
Cartographic Modelling and Applications, 2007.

[19] S. Russel and P. Norvig, informed search and exploration, chapter 4 of
artificial intelligence, a modern approach, second edition, Pearson
education, 1995

[20] P. Taillandier, C. Duchêne and A. Drogoul, Knowledge revision in
systems based on an informed tree search strategy: application to
cartographic generalisation, in CSTST. 2008, pp. 273--278.

[21] M. Wimmer, F. Stulp, S. Pietzsch, and B. Radig. Learning local objective
functions for robust face model fitting. IEEE Transactions on Pattern
Analysis andMachine Intelligence (PAMI), 30(8), 2008

[22] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques (San Francisco, CA: Morgan Kaufmann), 2nd edition.
2005.

 129

